viernes, 23 de abril de 2010

Hormonas

Hormonas




Las hormonas son sustancias segregadas por células especializadas, localizadas en glándulas de secreción interna o glándulas endocrinas (carentes de conductos), o también por células epiteliales e intersticiales con el fin de afectar la función de otras células. Hay hormonas animales y hormonas vegetales como las auxinas, ácido abscísico, citoquinina, giberelina y el etileno.


Son transportadas por vía sanguínea o por el espacio intersticial, solas (biodisponibles) o asociadas a ciertas proteínas (que extienden su vida media al protegerlas de la degradación) y hacen su efecto en determinados órganos o tejidos diana o blanco a distancia de donde se sintetizaron, sobre la misma célula que la sintetiza (acción autócrina) o sobre células contiguas (acción parácrina) interviniendo en la comunicación celular.




Las hormonas pertenecen al grupo de los mensajeros químicos, que incluyen a los neurotransmisores. A veces es difícil clasificar a un mensajero químico como hormona o neurotransmisor. Todos los organismos multicelulares producen hormonas (incluyendo las plantas — fitohormona). Las hormonas más estudiadas en animales (y humanos), son las producidas por las glándulas endócrinas, pero también son producidas por casi todos los órganos humanos y animales.






SISTEMA ENDOCRINO

CLASIFICACION DE HORMONAS

Las hormonas suelen clasificarse dependiendo de su función o composición química, esta última es la clasificación que con mayor frecuencia suele utilizarse en el estudio de la fisiología endocrina.
Las hormonas según su estructura química se clasifican en esteroideas y no esteroideas.
Las hormonas esteroideas se forman a partir del colesterol, que es una molécula que hace parte de los lípidos que se producen en el cuerpo humano, este componente ofrece a las hormonas esteroideas una característica fundamental y es que las convierte solubles en lípidos, permitiéndole atravesar fácilmente la membrana plasmática fosfolípidica, de esta manera permite interactuar con sus receptores en el núcleo de la célula diana, para producir los efectos que se requieren en el ser vivo23.
Las hormonas no esteroideas se producen a partir de aminoácidos, los cuales se fusionan para dar origen a largas cadenas de aminoácidos, formando hormonas proteicas entre las que se encuentran la insulina, la paratiroidea, la prolactina, calcitonina, adenocorticotropica, glucagón y hormona del crecimiento.
Existen otras hormonas proteicas a las que un grupo carbohidrato se une a sus aminoácidos, convirtiéndolos en hormonas glucoproteícas, entre las que se encuentran la folículo estimulante, luteinizante, tiroideoestimulante y gonadotropina corionica humana.



VITAMINAS



VITAMINAS

Las vitaminas son compuestos heterogéneos imprescindibles para la vida, que al ingerirlas de forma equilibrada y en dosis esenciales puede ser trascendental para promover el correcto funcionamiento fisiológico. La gran mayoría de las vitaminas esenciales no pueden ser sintetizadas (elaboradas) por el organismo, por lo que éste no puede obtenerlos más que a través de la ingesta equilibrada de vitaminas contenidas en los alimentos naturales. Las vitaminas son nutrientes que junto a otros elementos nutricionales actúan como catalizadoras de todos los procesos fisiológicos (directa e indirectamente).


CLACIFICACION DE LAS VITAMINAS

Las vitaminas se pueden clasificar según su solubilidad: si lo son en agua hidrosolubles o si lo son en lípidos liposolubles. En los seres humanos hay 13 vitaminas, 9 hidrosolubles (8 del complejo B y la vitamina C ) y 4 liposolubles (A, D, E y K).

VITAMINAS LIPOSOLUBLES

En este grupo entran las vitaminas A, D, E y K. Las mismas son solubles en los cuerpos grasos, son poco alterables, y el organismo puede almacenarlas fácilmente. Dado que el organismo puede almacenarlas como reserva, su carencia estaría basada en malos hábitos alimentarios.

Vitamina Función (interviene en) Fuente
A
Intervienen en el crecimiento,
Hidratación de piel, mucosas pelo, uñas, dientes y huesos.
Ayuda a la buena visión.
Es un antioxidante natural.
Hígado, Yema de huevo, Lácteos, Zanahorias, Espinacas, Broccoli, Lechuga, Radiccio, Albaricoques, Damasco, Durazno, Melones, Mamón
D
Regula el metabolismo del calcio y también en el metabolismo del fósforo. Hígado, Yema de huevo, Lácteos, Germen de trigo, Luz solar
E
Antioxidante natural.
Estabilización de las membranas celulares.
Protege los ácidos grasos.
Aceites vegetales, Yema de huevo, Hígado, Panes integrales, Legumbres verdes, Cacahuate, Coco, Vegetales de hojas verdes
K
Coagulación sanguínea. Harinas de pescado, Hígado de cerdo, Coles, Espinacas

Al igual que la Vitamina C, las vitaminas A y C poseen propiedades antioxidantes. Respecto de los vínculos existentes entre las vitaminas y el deporte, o el rendimiento en los deportes, en los estudios realizados se observa que la vitamina E, por su función de estabilizadora de la estructura de las membranas y por sus propiedades antioxidantes, ha sido utilizada ampliamente entre los atletas. Si bien algunos trabajos que se basan en estudios controlados, indican una incidencia positiva en el rendimiento, muchos otros, demuestran una incidencia escasa de este suplemento en el rendimiento deportivo.


VITAMINAS HIDROSOLUBLES

Este grupo esta conformado por las vitaminas B, la vitamina C y otros compuestos anteriormente considerados vitaminas como son el acido folico, pantotenico, la biotina y carnetina. Dentro de este grupo de vitaminas, las reservas en el organismo no revisten importancia, por lo que la alimentación diaria debe aportar y cubrir diariamente las necesidades vitamínicas. Esto, se debe justamente a que al ser hidrosolubles su almacentamiento es mínimo.
La necesidad de vitaminas hidrosolubles debe siempre tener en cuenta el nivel de actividad física del individuo, dado que el ejercicio activa numerosas reacciones metabólicas cuyas vitaminas son las coenzimas. Así se llega a una situación en la que para las actividades fisicas intensas, existen riesgos de carencias y por tanto aparecen los suplementos.

Compuesto Función (interviene en) Fuente
Vitamina B1 Participa en el funcionamiento del sistema nervioso.
interviene en el metabolismo de glúcidos y el crecimiento y mantenimiento de la piel.
Carnes, yema de huevo, levaduras, legumbres secas, cereales integrales, frutas secas.
Vitamina B2 Metabolismo de prótidos y glúcidos
Efectua una actividad oxigenadora y por ello interviene en la respiración celular, la integridad de la piel, mucosas y el sistema ocular por tanto la vista.
Carnes y lácteos, cereales, levaduras y vegetales verdes
Vitamina B3 Metabolismo de prótidos, glúcidos y lípidos
Interviene en la circulación sanguínea, el crecimiento, la cadena respiratoria y el sistema nervioso.
Carnes, hígado y riñón, lácteos, huevos, en cereales integrales, levadura y legumbres
acido pantoténico Interviene en la asimilación de carbohidratos, proteínas y lípidos.
La sintesis del hierro, formación de la insulina y reducir los niveles de colesterol en sangre.
Cereales integrales, hígado, hongos, pollo, broccoli.
Vitamina B6 Metabolismo de proteínas y aminoácidos
Formación de glóbulos rojos, células y hormonas.
Ayuda al equilibrio del sodio y del potasio.
Yema de huevos, las carnes, el hígado, el riñón, los pescados, los lácteos, granos integrales, levaduras y frutas secas
biotina Cataliza la fijación de dióxido de carbono en la síntesis de los acidos grasos.
Interviene en la formación de la hemoglobina, y en la obtención de
energia apartir de la glucosa.
Hígado vacuno, maníes, cajú chocolate y huevos.
ácido fólico Crecimiento y división celular.
Formación de glóbulos rojos
Carnes, hígado, verduras verdes oscuras y cereales integrales.
carnitina Interviene en el transporte de ácidos grasos hacia el interior de las células.
Reduce los niveles de trigliceridos y colesterol en sangre.
Reduce el riesgo de depositos grasos en el hígado.
Principalmente en carnes y lacteos.
Vitamina B12 Elaboración de células
Sintesis de la hemoglobina
Sistema nervioso
Sintetizada por el organismo. No presente en vegetales.
Si aparece en carnes y lacteos.
Vitamina C Formación y mantenimiento del colágeno
Antioxidante
Ayuda a la absorción del hierro no-hémico.
Vegetales verdes, frutas cítricas y papas


Lipidos




Son moleculas oganicas denominadas tambien biomoleculas prasentes en los tejidos de los animales y plantas,compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, que tienen como característica principal el ser hidrofóbicas o insolubles en agua y sí en disolventes orgánicos como la bencina, el alcohol, el benceno y el cloroformo.



Tipos de lipidos:




acidos de alta masa molecular denominados acidos grasos: ceras, trigliceidos, fosfolipidos, gluccolipidos, terpenos, terpenoides,esteroles y esteroides.




Clasificacion:
Lípidos saponificables

Simples. Lípidos que sólo contienen carbono, hidrógeno y oxígeno.
Acilglicéridos. Cuando son sólidos se les llama grasas y cuando son líquidos a temperatura ambiente se llaman aceites.
Céridos (ceras)
Complejos. Son los lípidos que además de contener en su molécula carbono, hidrógeno y oxígeno, también contienen otros elementos como nitrógeno, fósforo, azufre u otra biomolécula como un glúcido. A los lípidos complejos también se les llama lípidos de membrana pues son las principales moléculas que forman las membranas celulares.
Fosfolípidos
Fosfoglicéridos
Fosfoesfingolípidos
Glucolípidos
Cerebrósidos
Gangliósidos

Lípidos insaponificables:

Terpenoides
Esteroides
Eicosanoides

Los terpenos o isoprenoides son una vasta y diversa clase de compuestos orgánicos derivados del isopreno (o 2-metil-1,3-butadieno), un hidrocarburo de cinco átomos de carbono. El nombre proviene de que los primeros miembros de esta clase fueron derivados del aguarrás ("turpentine" en inglés, "terpentin" en alemán).

Los esteroides son derivados del núcleo del ciclopentanoperhidrofenantreno o esterano que se compone de carbono e hidrógeno formando cuatro anillos fusionados, tres hexagonales y uno pentagonal; posee 17 átomos de carbono.

Los eicosanoides o icosanoides son un grupo de moléculas de carácter lipídico originadas de la oxigenación de los ácidos grasos esenciales de 20 carbonos tipo omega-3 y omega-6. Cumplen amplias funciones como mediadores para el sistema nervioso central, los eventos de la inflamación y de la respuesta inmune tanto en vertebrados como en invertebrados.

Carbohidratos






Carbohidratos!


Los glúcidos, carbohidratos, hidratos de carbono o sacáridos (del griego que significa "azúcar") son moléculas orgánicas compuestas por carbono, hidrógeno y oxígeno. Son solubles en agua y se clasifican de acuerdo a la cantidad de carbonos o por el grupo funcional que tienen adherido. Son la forma biológica primaria de almacenamiento y consumo de energía. Otras biomoléculas energéticas son las grasas y, en menor medida, las proteínas.











Tipos de glúcidos
Los glúcidos se dividen en monosacáridos, disacáridos, oligosacáridos y polisacáridos.


Monosacáridos



Los glúcidos más simples, los monosacáridos, están formados por una sola molécula; no pueden ser hidrolizados a glúcidos más pequeños. La fórmula química general de un monosacárido no modificado es (CH2O)n.

Los monosacáridos se clasifican de acuerdo a tres características diferentes: la posición del grupo carbonilo, el número de átomos de carbono que contiene y su quiralidad.


Los monosacáridos más pequeños son los que poseen tres átomos de carbono, y son llamados triosas; aquéllos con cuatro son llamados tetrosas, lo que poseen cinco son llamados pentosas, seis son llamados hexosas y así sucesivamente. Los sistemas de clasificación son frecuentemente combinados; por ejemplo, la glucosa es una aldohexosa (un aldehído de seis átomos de carbono), la ribosa es una aldopentosa (un aldehído de cinco átomos de carbono) y la fructosa es una cetohexosa (una cetona de seis átomos de carbono).


Disacáridos










Los disacáridos son glúcidos formados por dos moléculas de monosacáridos y, por tanto, al hidrolizarse producen dos monosacáridos libres. Los dos monosacáridos se unen mediante un enlace covalente conocido como enlace glucosídico, tras una reacción de deshidratación que implica la pérdida de un átomo de hidrógeno de un monosacárido y un grupo hidroxilo del otro monosacárido, con la consecuente formación de una molécula de H2O, de manera que la fórmula de los disacáridos no modificados es C12H22O11.



Oligosacáridos












Los oligosacáridos están compuestos por entre tres y nueve moléculas de monosacáridos que al hidrolizarse se liberan.

No obstante, la definición de cuan largo debe ser un glúcido para ser considerado oligo o polisacárido varía según los autores. Según el número de monosacáridos de la cadena se tienen los trisacáridos (como la rafinosa ), tetrasacárido (estaquiosa), pentasacáridos, etc.
Los oligosacáridos se encuentran con frecuencia unidos a proteínas, formando las glucoproteínas, como una forma común de modificación tras la síntesis proteica.



Polisacáridos


Los polisacáridos son cadenas, ramificadas o no, de más de diez monosacáridos. Los polisacáridos representan una clase importante de polímeros biológicos. Su función en los organismos vivos está relacionada usualmente con estructura o almacenamiento. El almidón es usado como una forma de almacenar monosacáridos en las plantas, siendo encontrado en la forma de amilosa y la amilopectina (ramificada). En animales, se usa el glucógeno en vez de almidón el cual es estructuralmente similar pero más densamente ramificado. Las propiedades del glucógeno le permiten ser metabolizado más rápidamente.

La celulosa y la quitina son ejemplos de polisacáridos estructurales.

Otros polisacáridos incluyen la callosa, la lamiña, la rina, el xilano y la galactomanosa.
Los polisacáridos resultan de la condensación de muchas moléculas de monosacáridos con la pérdida de varias moléculas de agua. Su fórmula empírica es: (C6 H10 O5)n.


Función de los glúcidos




Los glúcidos desempeñan diversas funciones, entre las que destacan la energética y la estructural.
Glúcidos energéticos
Los mono y disacáridos, como la glucosa, actúan como combustibles biológico, aportando energía inmediata a las células; es la responsable de mantener la actividad de los músculos, la temperatura corporal, la tensión arterial, el correcto funcionamiento del intestino y la actividad de las neuronas.
Glúcidos estructurales
Algunos polisacáridos forman estructuras esqueléticas muy resistentes, como las celulosa de las paredes de células vegetales y la quitina de la cutícula de los artrópodos.
Otras funciones
La ribosa y la desoxirribosa son constituyentes básicos de los nucleótidos, monómeros del ARN y del ADN.
Los oligosacáridos del glicocáliz tienen un papel fundamental en el reconocimiento celular.